МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЯ БРАТСКИЙ ЦЕЛЛЮЛОЗНО-БУМАЖНЫЙ КОЛЛЕДЖ

Специальности

09.02.07 Информационные системы и программирование 13.02.02 Теплоснабжение и теплотехническое оборудование 13.02.11 Техническая эксплуатация и обслуживание электрического и электромеханического оборудования (по отраслям) 15.02.12 Монтаж, техническое обслуживание и ремонт промышленного оборудования (по отраслям)

МЕТОДИЧЕСКОЕ ПОСОБИЕ

для выполнения лабораторных работ

по дисциплине «ХИМИЯ» Составила (разработала) Кокорина Д.А., преподаватель кафедры химикомеханических дисциплин

Данные методические указания предназначены ДЛЯ студентов специальностей 09.02.07 Информационные системы и программирование. теплотехническое 13.02.02 Теплоснабжение и оборудование. 13.02.11 обслуживание Техническая эксплуатация электрического И оборудования (по отраслям). 15.02.12 электромеханического Монтаж, техническое обслуживание и ремонт промышленного оборудования (по отраслям). Для выполнения лабораторных работ.

Рассмотрено на заседании кафедры химико-механических дисциплин

‹ ‹	>>	20	Γ.	
				(Подпись зав. кафедрой)
Оло	обрено и утверж	слено рела	акшионнь	ым советом
	-rr	I		
(Подпись председателя Р	PC)		
		20		26
~		20	Γ.	№

Настоящие методические указания являются частью учебнометодического комплекса по учебной дисциплине «Химия» и предназначены для 09.02.07 Информационные студентов no специальности системы программирование. 13.02.02 Теплоснабжение теплотехническое uоборудование. 13.02.11 Техническая эксплуатация обслуживание и электрического и электромеханического оборудования (по отраслям). 15.02.12 Монтаж, техническое обслуживание и ремонт промышленного оборудования (по отраслям)

Содержание

Введение	5
Лабораторная работа 1 Получение и свойства неметаллов	
Лабораторная работа 2 Специфические свойства металлов	11
Лабораторная работа 3 Углеводороды.	13
Лабораторная работа 4 Спирты	
Лабораторная работа 5 Альдегиды. Карбоновые кислоты	

Введение

Методическое указание содержит краткий теоретический материал и методики выполнения лабораторных работ.

Таблица 1 - Перечень лабораторных работ

No	Наименование лабораторной работы		
1	Получение и свойства неметаллов.		
2	Специфические свойства металлов.		
3	Углеводороды.		
4	Спирты.		
5	Альдегиды. Карбоновые кислоты.		

При выполнении лабораторных работ по дисциплине «Химия» отрабатываются следующие компетенции:

- OК 1 Выбирать способы решения задач профессиональной деятельности, применительно к различным контекстам.
- ОК 2 Использовать современные средства поиска, анализа и интерпретации информации, и информационные технологии для выполнения задач профессиональной деятельности.
 - ОК 4 Эффективно взаимодействовать и работать в команде.
- ОК 5 Осуществлять устную и письменную коммуникацию на государственном языке Российской Федерации с учетом особенностей социального и культурного контекста.

ОК6Проявлять гражданско-патриотическую позицию, демонстрировать осознанное поведение на основе традиционных общечеловеческих ценностей, в том числе с учетом гармонизации межнациональных и межрелигиозных отношений, применять стандарты антикоррупционного поведения.

- ОК 7 Содействовать сохранению окружающей среды, ресурсосбережению, применять знания об изменении климата, принципы бережливого производства, эффективно действовать в чрезвычайных ситуациях.
- ОК 9 Пользоваться профессиональной документацией на государственном и иностранном языках.

Техника безопасности и основные правила работы в лаборатории.

Студент допускается к работе в лаборатории только после инструктажа по технике безопасности, что подтверждается росписью студента и лица, проводившего инструктаж, в специальном журнале.

Все студенты, прошедшие инструктаж, должны строго придерживаться правил техники безопасности. За несоблюдение правил установлена ответственность в административном или судебном порядке.

Работа студента в лаборатории разрешается в часы, отведенные по расписанию, а также в дополнительное время, согласованное с преподавателем, под наблюдением преподавателя или лаборанта.

Запрещается принимать пищу в лаборатории, пробовать на вкус химические вещества, оставлять какие-либо реактивы в посуде без соответствующей надписи.

Все растворы, не подлежащие сливу в канализацию (органические растворители, соли ртути и серебра, легковоспламеняющиеся жидкости, концентрированные кислоты и щелочи и т. д.), следует выливать в особые банки для слива, получив указания лаборанта.

Концентрированные кислоты и щелочи, сильнодействующие реактивы (бром и др.) надо хранить в вытяжном шкафу под тягой на подносе и не выносить их оттуда.

При всех работах с едкими веществами (кислоты, щелочи и др.) необходимо соблюдать максимальную осторожность, имея в виду, что несчастные случаи всегда происходят в результате неосведомленности, невнимательности или небрежности работающего.

Беря вещество для опыта, следует внимательно прочитать этикетку и проверить содержимое по качественным признакам (цвет, запах, консистенция и др.).

При попадании едкого вещества на стол или на пол следует это место сразу же засыпать песком, затем песок собрать и вынести из помещения. Облитое кислотой место промыть раствором соды.

Реакции, которые могут сопровождаться сильным разогревом (растворение кислот, щелочей), следует проводить только в посуде из химического стекла, а не в толстостенной посуде. При этом реакционный сосуд помещают в кристаллизатор.

Засасывать едкие жидкости в пипетку необходимо только с помощью груши или пневмонасоса, а не ртом.

Нагревать растворы на плитке следует только в посуде из химического стекла без пробки. При этом посуда должна быть сухой снаружи. Брать нагретые предметы необходимо с помощью полотенца или специальных напальчников.

Содержание рабочего места.

Рабочее место аналитика - лабораторный стол, оборудованный полками и ящиками для хранения реактивов и посуды и оснащенный подводкой электричества, воды и т. п.

Приступая к выполнению работы, студент должен внимательно прочитать ее описание и в соответствии с ним подготовить необходимую посуду и реактивы, расположив их так, чтобы удобно было ими пользоваться. Все лишнее следует убрать на полки или в ящики стола.

Одно из условий получения правильных результатов - чистота рабочего места, так как даже небольшие загрязнения посуды или реактивов могут значительно исказить полученные данные. Случайно разлитое на стол вещество нужно немедленно убрать, а стол хорошо вымыть.

По окончании работы растворы, которые еще понадобятся, следует убрать в ящик, а приборы выключить и зачехлить, после чего сдать рабочее место дежурному по группе или лаборанту. Использованные растворы и реактивы по указанию лаборанта нужно слить, посуду освободить, вымыть и убрать на место, где она должна храниться.

Правила ведения лабораторного журнала.

На практике часто приходится использовать ранее полученные данные: составлять сводные отчеты, анализировать и сопоставлять результаты, полученные в течение определенного периода, или проверять их в сомнительных случаях.

Поэтому полная и своевременная запись хода и результатов анализа или другой выполняемой работы имеет гораздо большее значение, чем может показаться начинающему работнику.

Форма записи экспериментальных и других данных должна содержать ряд обязательных сведений и быть в какой-то мере стандартной. Ниже даны общие рекомендации по ведению лабораторного журнала:

- для ведения журнала берут общую тетрадь, в которой сразу же нумеруют все страницы. Результаты всех измерений или других операций записывают в журнал, используя правые страницы; левые страницы оставляют для расчетов. Категорически запрещается делать записи на разрозненных листках бумаги.
- в журнале обязательно указывают дату выполнения эксперимента. Работа должна иметь название заголовок, а каждый ее этап подзаголовок, поясняющий выполняемую операцию. Кратко описывают ход работы.

Правила поведения при несчастных случаях.

При ожоге концентрированными кислотами необходимо промыть обожженное место струей воды, а затем — 2 - 3%-ным раствором соды.

При ожоге едкими щелочами пострадавшее место промыть водой до полного удаления щелочи, а затем — 2 - 3%-ным раствором борной или уксусной кислоты. При химических ожогах глаза необходимо осторожно промыть водой и оказать первую медицинскую помощь пострадавшему (при необходимости вызвать «Скорую помощь» по телефону 03).

При термических ожогах необходимо обработать обожженное место мазью или 7%-ным раствором перманганата калия и наложить повязку. При необходимости отправить пострадавшего в медпункт.

При порезах стеклом место пореза осторожно протереть ватой, смоченной йодистой настойкой (предварительно убедитесь в том, что в ране

нет осколков стекла), а затем, приложив к ране вату, забинтовать. При серьезных травмах пострадавшего отправить в медпункт.

В случае воспламенения одежды необходимо немедленно набросить на пострадавшего халат или одеяло, сбив пламя.

При возникновении пожара в лаборатории необходимо сразу же отключить вентиляцию и электроэнергию. Принять все меры к ликвидации очага загорания. При необходимости воспользоваться огнетушителями или вызвать пожарную команду (телефон 01).

Лабораторная работа 1 Получение и свойства неметаллов.

Цель работы: Изучить химические свойства кислот и оснований.

Опыт № 1 Реакция нейтрализации.

В две пробирки налить по 5 капель NaOH и добавить в одну пробирку 2 капли фенолфталеина, а в другую метилоранжа. Затем добавить по 5 капель HCl. Почему изменилась окраска, что произошло? Объясните. Напишите уравнение реакций.

В пробирку налейте 5 капель H_2SO_4 прилейте 2 капли метилоранжа. Добавьте в пробирку 5 капель NaOH. Почему изменилась окраска? Объясните происходящее. Составьте уравнение реакций и сделайте вывод.

Опыт № 2Взаимодействие шелочей с кислотными основаниями.

Налейте в пробирку 10 капель $Ca(OH)_2$ и через стеклянную трубку подуйте до помутнения раствора. Что произошло? Запишите уравнения реакций, Сделайте вывод.

Опыт № 3 Взаимодействие щелочи с солями.

К 5 каплям CuSO₄ добавьте 5 капель NaOH. Что получилось? Составьте уравнение реакций, запишите вывод.

Опыт № 4 Разложение оснований при нагревании.

Полученный гидроксид меди в предыдущем опыте, нагрейте на пламени спиртовки. Что произошло, напишите уравнение реакций, сделайте вывод.

Опыт № 5 Растворение основание в кислотах.

Вновь получите из $CuSO_4$ и NaOH гидроксид меди (как в опыте № 3), к полученному осадку по каплям приливайте HCl до полного растворения. Запишите уравнение реакций, сделайте вывод.

Опыт № 6 Взаимодействие кислот с металлами.

В пробирку налейте 10 капель HCl, опустите в раствор металлический кусочек натрия. Объясните происходящее. Запишите уравнение реакции. Сделайте вывод.

Опыт № 7 Взаимодействие кислот с основными оксидами.

На дно пробирки насыпьте порошок CuO, налейте 10 капель H_2SO_4 . Содержимое пробирки нагрейте. Объясните происходящее и сделайте вывод.

Опыт № 8 Взаимодействие солей с щелочами.

К 3 каплям $CuSO_4$ добавьте 3 капли NaOH. Что получилось? Сделайте вывод.

Опыт № 9 Взаимодействие солей с солями.

K 4 каплям $BaCl_2$ добавьте 4 капли Na_2SO_4 . Что наблюдаете? Запишите уравнение реакции. Сделайте вывод.

Защита лабораторной работы.

Вариант 1

- 1. К какому классу неорганических соединений относятся CaO, H_2SO_4 ? Назовите эти вещества. Напишите уравнения химических реакций, характеризующие их химические свойства. Назовите полученные вещества.
 - 2. Выполните превращения: $P_2O_5 \rightarrow H_3PO_4 \rightarrow K_3PO_4$

Вариант 2

- 1. К какому классу неорганических соединений относятся P_2O_5 , HC1? Назовите эти вещества. Напишите уравнения химических реакций, характеризующие их химические свойства. Назовите полученные вещества.
 - 2. Выполните превращения: $CaCO_3 \rightarrow CO_2 \rightarrow H_2CO_3$

Вариант 3

- 1. К какому классу неорганических соединений относятся CO_2 , HNO_3 ? Назовите эти вещества. Напишите уравнения химических реакций, характеризующие их химические свойства. Назовите полученные вещества.
 - 2. Выполните превращения: $Na_2O \rightarrow Na_2SO_4 \rightarrow BaSO_4$

Вариант 4

- 1. К какому классу неорганических соединений относятся K_2O , H_3PO_4 ? Назовите эти вещества. Напишите уравнения химических реакций, характеризующие их химические свойства. Назовите полученные вещества.
 - 2. Выполните превращения: $Fe_2O_3 \rightarrow Fe_2SO_4 \rightarrow FeCl_3$

Вариант 5

- 1. К какому классу неорганических соединений относятся Fe_2O_3 , H_2SO_3 ? Назовите эти вещества. Напишите уравнения химических реакций, характеризующие их химические свойства. Назовите полученные вещества.
 - 2. Выполните превращения: $P_2O_5 \rightarrow H_3PO_4 \rightarrow K_3PO_4$

Вариант 6

- 1. К какому классу неорганических соединений относятся BaO, HNO_3 ? Назовите эти вещества. Напишите уравнения химических реакций, характеризующие их химические свойства. Назовите полученные вещества.
 - 2. Выполните превращения: $CaCO_3 \rightarrow CO_2 \rightarrow H_2CO_3$

Лабораторная работа 2 Специфические свойства металлов.

Цель работы: Изучить химические свойства металлов.

Порядок работы.

Опыт 1. Взаимодействие металлов с кислородом

Кусочек магниевой стружки внесите в тигельных щипцах в пламя газовой горелки и наблюдайте его горение. Внесите продукт сгорания магния в пробирку, добавьте дистиллированной воды и встряхните. Испытайте полученный раствор фенолфталеином.

Опыт 2. Взаимодействие металлов с водой

Приготовьте пять пробирок с 3-4 мл дистиллированной воды.

- а). В первую пробирку внесите небольшой кусочек натрия и наблюдайте реакцию (реакция проводится в вытяжном шкафу!). Испытайте полученный раствор фенолфталеином.
- б). Во вторую пробирку внесите кусочек кальция реакцию (реакция проводится в вытяжном шкафу!). Сравните скорость выделения водорода в реакциях натрия и кальция с водой. Испытайте полученный раствор фенолфталеином.
- в). В третью пробирку поместите небольшой кусочек магния. Идет ли реакция при комнатной температуре? Осторожно нагрейте пробирку на газовой горелке.
- г). В четвертую пробирку внесите кусочек алюминиевой проволоки. Идет ли реакция при комнатной температуре? При нагревании?
- д). В пятую пробирку внесите кусочек алюминиевой проволоки, предварительно зачищенной наждачной бумагой. Идет ли реакция при комнатной температуре? При нагревании?

Опыт 3. Взаимодействие металлов с галогенами

Для проведения опыта необходимо сначала получить хлор по нижеприведенной реакции:

$$KMnO_4 + HCl$$
 конц. $\rightarrow Cl_2 + MnCl_2 + KCl + H_2O$

(коэффициенты в этой реакции поставьте самостоятельно).

- а). Откройте кран капельной воронки установки для получения хлора таким образом, чтобы кислота капала в колбу с частотой примерно 1 капля в 7 секунд. Заполните хлором коническую колбу и закройте ее пробкой (реакция проводится в вытяжном шкафу!). Перекройте кран капельной воронки.
- б). В ложечке для сжигания нагрейте железные опилки до красного каления и опустите ложечку в колбу с хлором. После окончания реакции и конденсации паров хлорида железа (III) налейте в колбу 10-15 мл дистиллированной воды и перемешайте содержимое колбы. Разлейте полученный раствор на две пробирки и проведите качественные реакции на ионы Fe^{3+} и Cl :
- в одну пробирку добавьте раствор нитрата серебра; в присутствии ионов СІвыпадает белый осадок хлорида серебра;
- в другую пробирку добавьте раствор роданида калия или роданида аммония; в присутствии ионов Fe³⁺ раствор окрашивается в кроваво-красный цвет за счет образования роданида железа (III).

Опыт 4. Взаимодействие металлов с кислотами-неокислителями

В четыре пробирки налейте по 2 мл 2N раствора серной кислоты. Поместите в кислоту по кусочку следующих металлов: магния, цинка, железа, меди. Сравните интенсивность протекания реакции в каждой пробирке и сделайте выводы. Расположите металлы в порядке возрастания их активности.

Опыт 5. Взаимодействие металлов с кислотами-окислителями (опыт проводится в вытяжном шкафу!).

Последовательно проведите реакции меди, железа и цинка с разбавленной азотной, концентрированной азотной и серной кислотами. Если реакция не идет при комнатной температуре, осторожно нагрейте пробирку.

Опыт 6. Вытеснение одних металлов другими из солей Проведите реакции взаимодействия:

- а) раствора сульфата меди с железом;
- б) раствора сульфата железа с медью;
- в) раствора нитрата свинца с цинком.

Контрольные вопросы и задания.

- 1. Напишите уравнения реакций взаимодействия кальция с:
- а) кислородом,
- б) хлором,

- в) водой,
- г) соляной кислотой.
- 2. Дайте определение понятию пластичность.
- 3. Приведите примеры по два металла, которые:
- а) вытесняют водород из раствора соляной кислоты,
- б) не вытесняют водород из раствора соляной кислоты,
- в) вытесняют водород из воды,
- г) не окисляются кислородом даже при прокаливании.

Углеводороды.

Цель работы: Закрепление теоретических знаний об углеводородах, их строении, получении и химических свойствах. Формирование навыков лабораторного эксперимента.

Оборудование и реактивы: штатив с пробирками, пробиркодержатель, пробка с газоотводной трубкой, спиртовка, спички; парафин ($C_{17}H_{36}$), растворы кислоты (HCl), щелочи (NaOH), окислителей — перманганат калия (KMnO₄) и бромная вода (Br_2), смесь этилового спирта (C_2H_5OH) с серной кислотой(H_2SO_4) конц., прокаленный песок, карбид кальция (CaC_2), вода (H_2O).

Теория.

Алканами называются углеводороды с одинарной связью между углеродными атомами. Предельные углеводороды являются инертными и с трудом вступают в химические взаимодействия из -за насыщенности связей. Алкенами называются внутримолекулярных углеводороды с двойной связью между соседними атомами углерода. Алкинами называются углеводороды с тройной связью между соседними углеродными атомами. алкины являются непредельными углеводородами. Благодаря кратным связям, входящим в состав непредельных углеводородов, эти углеводороды являются более реакцеспособными: для них характерны реакции присоединения по месту разрыва кратных связей.

Ход работы.

1. Свойства предельных углеводородов.

В пробирки с растворами кислоты (HCl), щелочи (NaOH) и окислителя (KMnO₄) опустите по кусочку парафина. *Что наблюдаете?* Запишите уравнения реакций и сделайте вывод о свойствах предельных углеводородов по

отношению к данным реактивам. Поднесите зажженную спичку к парафину (свечке) – *что происходит?* Напишите <u>уравнение реакции</u> горения парафина.

Опыт 1. Получение и свойства метана.

Условия выполнения работы:

В пробирку насыпали равное количество порошков ацетата и гидроксида натрия. Пробирку закрыли пробкой с газоотводной трубкой, и закрепили на штатив. Затем, нагрели пробирку, а конец газоотводной трубки поочерёдно опустили в пробирку с бромной водой и перманганатом калия. Убедились, что они не изменили окраску при пропускании образовавшегося газа, так как метан является предельным углеводородом. Подожгли газ, он горит синим пламенем. Эта реакция используется в газовых плитках и печах.

$$CH_3COONa + NaOH \rightarrow Na_2CO_3 + CH4\uparrow$$

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

Опыт 2. Получение и свойства этилена

Условия выполнения работы:

В пробирку налили примерно 2 мл концентрированной серной кислоты, 1 мл этилового спирта, насыпали несколько крупинок оксида алюминия (III) Al_2O_3 и небольшой кусочек пемзы для равномерного кипения смеси.

Закрыли пробирку пробкой с газоотводной трубкой и закрепили её на штативе и нагрели. Конец газоотводной трубки поочерёдно опускали в пробирки с бромной водой и раствором перманганата калия. Наблюдаем обесцвечивание этих растворов, так как происходит присоединение брома к этилену и окисление этилена перманганатом калия до этиленгликоля, этилен при этом проявляет свои непредельные свойства. Подожгли газ, он горит светящимся пламенем, в отличие от этана, который горит не светящимся пламенем.

$$\begin{array}{c} CH_2 = CH_2 + Br_2 \to CH_2Br - CH_2Br \\ 3H_2 = CH_2 + K_2MnO_4 + 4H_2O \to 2MnO_2 + 3CH_2 - CH_2 + KOH \\ & OH OH \\ CH_2 = CH_2 + 3O_2 \to 2CO_2 + 2H_2O \\ & B лаборатории этилен получают: \\ 1) Из спиртов: \\ C_2H_3 - OH & \xrightarrow{H_2SO_4(\kappa cos_4)} CH_2 = CH_2 + H_2O \\ 2) Из галог енопроизводных: \\ CH_3 - CH_2C1 + KOH & \longrightarrow CH_2 = CH_2 + H_2O \\ 3) Из дигалог енопроизводных: \\ CH_2 - CH_2 + Zn \to CH_2 = CH_2 + ZnCl_2 \\ 4) В промышленности этилен получают сухой перегонкой коксового газа и газа крекинга нефти и крекингом природного газа. \end{array}$$

2. Получение и свойства ацетилена.

а) Кусочек карбида кальция поместите в пробирку, прилейте воду и сразу закройте отверстие пробирки газоотводной трубкой. Напишите <u>уравнение</u> реакции получения ацетилена.

б) Проведите аналогичные опыты ацетилена с окислителями (бромной водой и перманганатом калия), затем подожгите выделяющийся газ. *Что наблюдаете?* Запишите уравнение реакциивзаимодействия ацетилена с бромной водой, перманганатом калия и кислородом.

Сделайте вывод о химических свойствах алкинов на примере ацетилена и сравните их с химическими свойствами алкенов на примере этилена, обратив внимание на скорость реакций.

Лабораторная работа 4 Спирты.

Цель работы: Исследование физических и химических свойств одноатомных и многоатомных спиртов.

Опыт № 1 Отношение спиртов к индикаторам.

В 4 пробирки помещают воду и добавляют спирт этиловый, пропиловый, бутиловый, изоамиловый. Испытывают раствор спиртов на фенолфталеин и лакмус. Как изменяется цвет индикатора?

Спирты показывают нейтральную реакцию при обычных способах определения кислотности, более слабые, чем у воды. Константа диссоциации спиртов ниже константы диссоциации воды. Практически спирты представляют собой нейтральные вещества.

Опыт № 2 Образование и гидролиз алкоголятов

В сухую пробирку помещают маленький кусочек металлического натрия. Добавляют этиловый спирт и закрывают пробирку пальцем. По окончании реакции подносят пробирку к пламени спиртовки и отнимают палец. У отверстия пробирки воспламеняется выделивший водород. Оставшийся на дне беловатый осадок этилата натрия растворяют в дистиллированной воде, добавляют спиртовой раствор фенолфталеина, появляется малиновое окрашивание.

Опыт № 3 Окисления этилового спирта окисью меди

Помещают в сухую пробирку этиловый спирт, держа спираль и медной проволоки, нагревают ее на пламени горелки до появления черного налета окиси меди. Еще горячую спираль опускают в пробирку с этиловым спиртом, черная поверхность спирали немедленно становится золотистой вследствие восстановления окиси меди. При этом ощущается характерный запах уксусного альдегида /запах яблок/. Подтверждением образования уксусного альдегида может, служит цветная реакция с фуксинсернистой кислотой. В пробирку помещают раствор фуксинсернистую кислоту и добавляют немного полученного раствора. Появляется розово — фиолетовая окраска (цветная

реакция на альдегид).

Написать уравнение реакции.

Опыт № 4 Окисление этилового спирта хромовой смеси

Окисления спиртов в лабораторных условиях чаше всего осуществляется хромовой смесью. В сухую пробирку помещают этиловый спирт, добавляют раствор серной кислоты 2 н. и раствор двухромовокислого калия. Нагревают оранжевый раствор над пламени спиртовки до начала изменения окраски на синевато – зеленую. Одновременно ощущается запах уксусного альдегида.

Написать уравнение реакции.

Опыт № 5 Взаимодействие глицерина с гидроокисью меди (II)

Помещают пробирку раствор сернокислой меди, раствор едкого натра и перемешивают, образуется голубой студенистый осадок гидроокиси меди (II). В пробирку добавляют глицерин и содержимое взбалтывают. Осадок растворяется глицерата меди.

Написать уравнение реакции.

Опыт № 6 Получение диэтилового эфира

В сухую пробирку вносят этиловый спирт и серную кислоту концентрированную. Смесь осторожно нагревают в пламени спиртовки до бурения раствора. К горячей смеси очень осторожно приливают еще этилового спирта. Ощущается характерный запах диэтилового эфира.

Написать уравнение реакции.

Лабораторная работа **5** Альдегиды. Карбоновые кислоты.

Цель: исследовать химические свойства альдегидов и карбоновых кислот и осуществить качественные реакции на карбонильные соединения.

Опыт 1. Цветная реакция на альдегиды с фуксинсернистой кислотой

В две пробирки помещают по 2 капли раствора фуксинсернистой кислоты и добавляют в одну из них 2 капли раствора формальдегида, в другую — 2 капли этаналя. Раствор фуксинсернистой кислоты при добавлении раствора формальдегида постепенно окрашивается в фиолетовый цвет, при добавлении этаналя — в розово-фиолетовый цвет.

Опыт 2. Самоокисление водных растворов формальдегида

В пробирку помещают 2—3 капли раствора формальдегида и добавляют 1 каплю индикатора метилового красного. Раствор принимает красную окраску, что указывает на кислую реакцию.

Альдегиды очень легко окисляются. В водных растворах они могут окисляться до кислоты за счет кислорода другой молекулы альдегида, восстанавливая ее в спирт — происходит реакция окислительного восстановления (дисмутации):

Сформулируйте вывод по работе.

Опыт 3. Окисление альдегидов аммиачным раствором оксида серебра (реакция «серебряного зеркала»)

В чистую пробирку вводят 2 капли раствора нитрата серебра и прибавляют каплю аммиака. Образующийся бурый осадок гидроксида серебра растворяют, добавляя избыток (1—2 капли) раствора аммиака. Затем прибавляют каплю раствора формальдегида и медленно подогревают содержимое пробирки над пламенем горелки. При осторожном нагревании содержимое пробирки буреет и на ее стенках может выделиться серебро в виде блестящего зеркального налета (комплексный ион металла восстанавливается до металлического серебра). Альдегид окисляется до кислоты, которая образует аммониевую соль. Химизм процесса:

Сформулируйте вывод по работе.

Опыт 4. Окисление альдегидов гидроксидом меди (II)

В пробирку помещают 4 капли раствора едкого натра, разбавляют 4 каплями воды и добавляют 2 капли раствора сульфата меди (II). К выпавшему осадку гидроксида меди (II) прибавляют 1 каплю раствора формальдегида и взбалтывают содержимое пробирки. Нагревают над пламенем горелки до кипения только верхнюю часть раствора так, чтобы нижняя часть оставалась для контроля холодной. В нагретой части пробирки выделяется желтый осадок гидроксида меди (I) (CuOH), переходящий в красный оксид меди (I) (Cu2O), а иногда на стенках пробирки выделяется даже металлическая медь.

Химизм процесса:

$$CuSO_4 + 2NaOH = Cu(OH)_2 + Na_2SO_4$$

 $2Cu(OH)_2 + HCOH = HCOOH + Cu_2O + 2H_2O$

Повторите этот опыт, заменив раствор формальдегида раствором этаналя. Сформулируйте вывод по работе.

Опыт 5. Реакция бензальдегида с гидросульфитом натрия

В пробирку помещают 3 капли бензойного альдегида, добавляют 5 капель насыщенного раствора гидросульфита натрия и энергично встряхивают смесь. Образуются кристаллы гидросульфитного соединения.

Затем к смеси добавляют 6 капель воды и помещают пробирку в горячую водяную баню. Кристаллы быстр исчезают, в растворе появляются маслянистые капли ощущается характерный запах бензальдегида. Химизм процесса:

При нагревании в водном растворе гидросульфитное соединение легко разлагается на исходные вещества:

Сформулируйте вывод по работе.

Опыт 6. Свойства ализарина.

В пробирку помещают 3-5 капель ализарина, добавляют 6 капель щелочи и тщательно взбалтывают. Получается раствор, окрашенный в фиолетовый цвет.

- 1.В пробирку помещают 2 капли раствора ализарина и добавляют 3 капли раствора квасцов. Образуется оранжево-красный осадок алюминиевого ализаринового лака.
- 2. Кусочек белой ткани простирывают с мылом и тщательно прополаскивают в воде. В фарфоровую чашечку наливают раствор квасцов, пропитывают им ткань и отжимают.

В пробирку помещают 5 капель щелочного раствора ализарина, нагревают и в горячий раствор погружают кусочек «протравленной» ткани на 1—2 мин. Затем ткань, окрашенную в красный цвет, промывают водой.

Опыт 7. Кислотные свойства карбоновых кислот.

- 1.В три пробирки помещают по 1 капле раствора уксусной кислоты. В первую пробирку добавляют 1 каплю метилового оранжевого, во вторую—1 каплю лакмуса и в третью— 1 каплю фенолфталеина. В пробирке с метиловым оранжевым появляется красное окрашивание, в пробирке с лакмусом розовое. Фенолфталеин остается бесцветным.
- 2.В пробирку помещают 2 капли раствора уксусной кислоты и добавляют немного магния. К отверстию пробирки подносят горящую лучинку. При этом наблюдается вспышка, сопровождающаяся резким звуком, характерным для вспышки смеси водорода и воздуха. Химизм процесса:
- 3. В пробирку наливают 2—3 капли раствора уксусной кислоты и добавляют несколько крупинок углекислого натрия. К отверстию пробирки подносят горящую лучинку. Лучинка гаснет.

Опыт 8. Образование и гидролиз уксуснокислого железа.

В пробирку помещают несколько кристалликов уксуснокислого натрия, 3 капли воды и 2 капли раствора хлорида железа (III). Раствор окрашивается в желтовато-красный цвет в результате образования железной соли уксусной кислоты. Раствор нагревают до кипения. Тотчас же выпадают хлопья основных солей красно-бурого цвета.

Опыт 9. Качественная реакция α-оксикислот с хлоридом железа (III)

В две пробирки вводят по 1 капле раствора хлорида железа и добавляют по 2 капли раствора фенола. Растворы окрашиваются в фиолетовый цвет. В

одну пробирку добавляют 2 капли молочной кислоты, а в другую— столько же капель уксусной кислоты. В пробирке с молочной кислотой появляется зеленовато-желтое окрашивание, в пробирке с уксусной кислотой цвет раствора не изменяется.

α-Оксикислоты вытесняют фенол из комплексного фенолята, и фиолетовая окраска раствора переходит в желтую. В присутствии молочной кислоты фиолетовый цвет железного комплекса изменяется на зеленоватожелтый вследствие образования лактата железа (молочнокислого железа)

Опыт 10. Цветная реакция салициловой, галловой кислоты и танина с хлоридом железа (Ш)

В пробирку вводят 2 капли раствора салициловой кислоты и прибавляют I каплю раствора хлорида железа. Раствор окрашивается в темно-фиолетовый цвет, что указывает на наличие в салициловой кислоте фенольного гидроксила. Добавляют к раствору 4 капли этилового спирта; окраска не исчезает (в отличие от фенола).

В одну пробирку вносят 2 капли раствора галловой кислоты, в другую—2 капли танина,-прибавляют в каж¬дую пробирку по капле раствора хлорида железа. Гал¬ловая кислота с хлоридом железа дает зеленовато-черное окрашивание, а танин — сине-черное.

Опыт 11. Разложение муравьиной и щавелевой кислот при нагревании с концентрированной серной кислотой

В пробирку приливают 3 капли муравьиной кислоты, 3 капли концентрированной серной кислоты и нагревают смесь в пламени горелки. Бурно выделяется газ. При поджигании газ горит голубоватыми вспышками. Химизм процесса:

Муравьиная кислота под действием концентрированной серной кислоты разлагается с образованием оксида углерода. Это свойство отличает муравьиную кислоту от остальных карбоновых кислот.

В пробирку помещают несколько кристаллов щавелевой кислоты и добавляют 2 капли серной кислоты. Пробирку закрывают пробкой с газоотводной трубкой и нагревают на пламени горелки. Поджигают выделяющийся газ — он горит голубоватыми вспышками. После этого конец газоотводной трубки опускают в баритовую воду. Баритовая вода мутнеет.

Под действием концентрированной серной кислоты щавелевая кислота в отличие от других двухосновных кислот разлагается.

Опыт 12. Окисление перманганатом калия олеиновой, щавелевой кислот и растительных масел

В пробирку помещают несколько кристаллов щавелевой кислоты, добавляют 2 капли перманганата калия и I каплю серной кислоты. Отверстие

пробирки закрывают Пробкой с газоотводной трубкой, конец которой опущен и пробирку с баритовой водой. Реакционную смесь нагревают. Розовый раствор перманганата калия обесцвечивается, а в пробирке с баритовой водой появляется белый осадок карбоната.

В отличие от высших гомологов щавелевая кислота обладает восстановительными свойствами: она количественно окисляется перманганатом калия в кислом растворе.

В пробирку помещают по 2 капли олеиновой кислоты, раствора карбоната натрия и раствора перманганата калия. При встряхивании смеси розовая окраска исчезает.

Обесцвечивание бромной воды и раствора перманганата калия указывает на наличие кратной связи в молекуле олеиновой кислоты.