МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

БРАТСКИЙ ЦЕЛЛЮЛОЗНО – БУМАЖНЫЙ КОЛЛЕДЖ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БРАТСКИЙ ГОСУДАРСТЕННЫЙ УНИВЕРСИТЕТ»

Для всех специальностей первого курса

МЕТОДИЧЕСКОЕ ПОСОБИЕ

Преобразования тригонометрических выражений по дисциплине
«МАТЕМАТИКА»

Братск 2019

Составила (разработала) М	акович Е. В., преподавател	ь кафедры физико-
математических и социальн	но гуманитарных дисципли	TH .
Рассмотрено на заседании и	кафельы физико-математич	леских и сопиально
гуманитарных дисциплин	кафедры физико математи	теских и социально
туманитарных дисциплин		
«»	_201_ г.	
		(Подпись зав. кафедрой)
Одобрено и утверждено ред	дакционным советом	
(F		
(Подпись председателя РС)		
,,	201 F	<u> №</u>
«»		J1≚

Содержание

Введение	4
1 Радианная мера угла	5
2 Поворот точки вокруг начала координат	9
3 Определение синуса, косинуса и тангенса угла	14
4 Знаки синуса, косинуса, тангенса и котангенса	16
5 Зависимость между sin,cos,tg и ctg	
6 Тригонометрические тождества	21
7 Синус, косинус и тангенс углов α и –α	23
8 Формулы сложения	
9 Синус, косинус и тангенс двойного угла	27
10 Синус, косинус и тангенс половинного угла	
11 Формулы приведения	
12 Сумма и раность синусов. Сумма и раность косинусов	36
Заключение	38
Список использованных источников	39

Введение

Тригонометрия - составная часть математики для студентов первого курса технического или естественнонаучного направления. Хорошие знания и прочные навыки по тригонометрии являются свидетельством достаточного уровня математической культуры, непременным условием успешного изучения в дальнейшем математики, физики, ряда технических дисциплин.

Настоящее пособие имеет целью помочь учащимся в повышении уровня их знаний по тригонометрии.

В данном пособии представлены основные разделы тригонометрии. Центральное место в нем отведено преобразованию тригонометрических выражений, применение тригонометрических формул.

Пособие состоит из 12 разделов, каждый из которых содержит лаконично изложенные теоретические сведения, сопровождаемые примерами. Для закрепления предлагаются различные по смыслу и сложности упражнения.

быть Материалы пособия МОГУТ использованы занятиях преподавателями и студентами первого курса в качестве обучающего пособия. В зависимости от направления подготовки преподаватель имеет рассматривать более сложные или возможность несложные Упражнения начинаются с простыхзаданий к более сложным заданиям. Разобранные примеры позволяют студентам изучать разделы самостоятельно.

1 Радианная мера угла

Пусть вертикальная прямая касается в точке Р окружности с центром О радиуса 1 в соответствии с рисунком 1.1. Будем считать эту прямую числовой осью с началом в точке Р, а положительным направлением на прямой направление вверх. За единицу длины на числовой оси возьмем радиус Отметим окружности. на прямой несколько $\frac{\pi}{\pm 2}, \pm 3, \pm \pi$, где $\pi \approx 3,14$ — иррациональное число. Вообразив эту прямую в виде нерастяжимой нити, закрепленной на окружности в точке Р, будем мысленно наматывать числовую прямую на окружность. Тогда точки с координатами $\pm 1, \ \pm \frac{\pi}{2}, \pm 3, \pm \pi$ перейдут соответственно в точки окружности M_1, M_2, M_3, M_4 . При этом длинна дуги PM_1 будет равна 1, длинна $PM_2 = \frac{\pi}{2}$ и так далее.

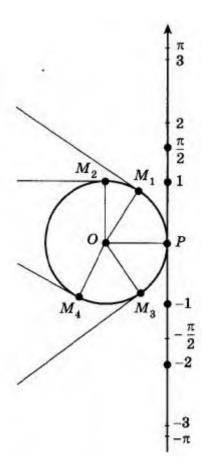


Рисунок 1.1 – Единичная окружность

Таким образом, каждой точке прямой ставится в соответствие некоторая точка окружности.

Центральный угол, опирающийся на дугу, длина которой равна радиусуокружности, называется углом в 1 радиан, как показано на рисунке 1.2.

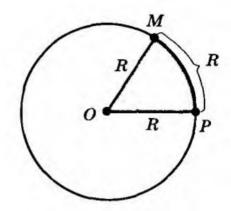


Рисунок 1.2 – Угол в один радиан

Градусная мера угла в 1 радиан равна

$$1 \text{ рад} = \left(\frac{180}{\pi}\right)^{7}, \tag{1.1}$$

Так как $\pi = 3,14$, то 1 рад = $57,3^{\circ}$.

Если угол содержит α радиан, то его градусная мера равна

$$a$$
 рад = $\left(\frac{180}{\pi} \cdot a\right)^{\epsilon}$ (1.2)

Если угол содержит α градусов, то его радианная мера равна

$$a^{\circ} = \frac{\pi}{180} \cdot a \operatorname{pad}_{(1.3)}$$

Обычно при обозначении меры угла в радианах наименование «рад» опускают.

Например, $360^{\circ} = 2\pi$ рад, пишут $360^{\circ} = 2\pi$.

Пример 1

Найти радианную меру угла, равного:

- a) 40° ;
- 6)120°;
- в)105°.

По формуле (1.3) находим:

- a) $40^{\circ} = 40 \cdot \pi / 180 = 2\pi/9$;
- 6) $120^{\circ} = 120 \cdot \pi / 180 = 2\pi / 3$;
- B) $105^{\circ} = 105 \cdot \pi/180 = 7\pi/12$.

Пример 2

Найти градусную меру угла, равного:

- a) $\pi/6$;
- б) $\pi/9$;
- B) $2 \cdot \pi/3$.

По формуле (1.2) находим:

- a) $\pi/6 = 180^{\circ}/6 = 30^{\circ}$;
- б) $\pi/9 = 180^{\circ}/9 = 20^{\circ}$;
- B) $2\pi/3 = 2 \cdot 180^{\circ}/6 = 120^{\circ}$.

Приведем таблицу наиболее часто встречающихся углов в градусной и радианной мере.

Таблица 1 – Радианная и градусная меры угла

Градусы	0	30	45	60	90	180	270	360
Радианы	0	π/6	$\pi/4$	$\pi/3$	$\pi/2$	π	$3\pi/2$	2π

Найти радианную меру угла, выраженного в градусах:

- 1) 40°;
- 2) 120°;
- 3) 150°;
- 4) **75°**;
- 5) 32°;
- 6) 140°.

Найти градусную меру угла, выраженного в радианах:

- 1) $\frac{\pi}{9}$;
- 2)
- 3)
- 4)
- 5) 20

2 Поворот точки вокруг начала координат

Рассмотрим на координатной плоскости окружность радиуса 1 с центром в начале координат. Ее называют единичной окружностью. Введем понятие поворота точки единичной окружности вокруг начала координат на угол α радиан, где α – любое действительное число.

Пусть $\alpha>0$. Предположим, что точка, двигаясь поединичной окружности от точки Р против часовой стрелки, прошла путь длиной α , как показано на рисунке 2.1. Конечную точку пути обозначим М.

В этом случае будем говорить, что точка М получена из точки Р поворотом вокруг начала координат на угол α радиан.

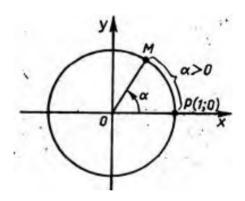


Рисунок 2.1 – Поворот точки против часовой стрелки

Пусть α <0. В этом случае поворот на угол α радиан означает, что движение совершалось по часовой стрелке и точка прошла путь длинной $|\alpha|$, как показано на рисунке 2.2.

Поворот на 0 рад означает, что точка остается на месте.

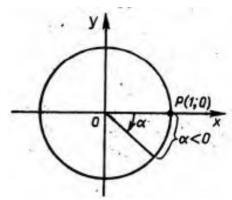


Рисунок 2.2 -Поворот точки по часовой стрелке

При повороте точки P(1;0) на угол $\overline{\bf 2}$, как показано на рисунке 2.3, получается точка M с координатами (0;1).

При повороте точки P(1;0) на угол $-\frac{\hbar}{2}$, как показано на рисунке 2.3,получается точка N(0;-1).

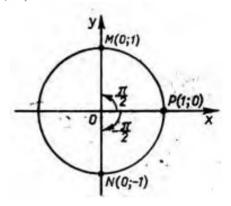


Рисунок 2.3 -Поворот точки

При повороте точки P(1;0) на угол получается точка K(0;-1).

При повороте точки P(1;0) на угол $-\pi$, как показано на рисунке 2.4, получается точка L(-1;0).

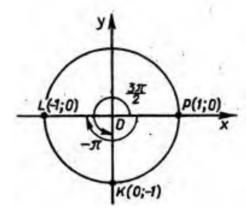


Рисунок 2.4 -Поворот точки

Приведем таблицу поворотов на некоторые углы, выраженные в радианной и градусной мерах, как показано на рисунке 2.5.

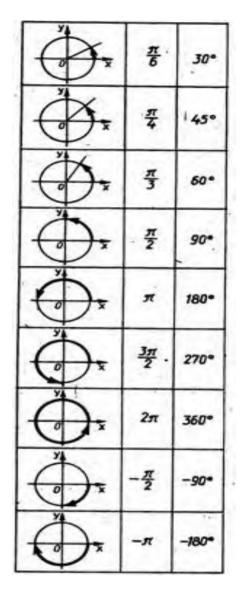


Рисунок 2.5-Повороты на различные углы

Отметим, что при повороте точки P(1;0) на 360° , точка возвращается на первоначальное положение. При повороте точки на - 360° , она также возвращается в первоначальное положение.

Рассмотрим примеры поворотов точки на угол, больший, и на угол, меньший -2π . Так, при повороте на угол точка совершает два полных оборота против часовой стрелки и проходит еще путь $\overline{2}$, как показано на рисунке 2.6.

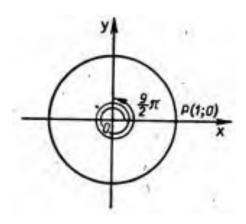


Рисунок 2.6-Поворот на угол

При повороте на угол $-\frac{9\pi}{2} = -2 \cdot 2\pi - \frac{\pi}{2}$ точка совершает два полных оборота по часовой стрелке и проходит еще путь $\frac{\pi}{2}$ в том же направлении, как показано на рисунке 2.7.

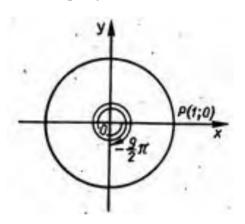


Рисунок 2.7–Поворот на угол $-\frac{9\pi}{2}$

На единичной окружности построить точку, полученную поворотом точки (1;0) на заданный угол:

- $1)\frac{\pi}{4};$
- 2) $-\frac{\pi}{3}$
- 3) $\frac{-3\pi}{4}$;

- $4) \frac{-5\pi}{4};$
- 6) -225.

Найти координаты точки, полученной поворотом точки Р (1; 0)на угол:

- 1); $\frac{-3\pi}{2}$;
- 3)
- 4) 540° ; 5) $\frac{-7\pi}{2}$; 6) $\frac{-15\pi}{2}$;
- 7) 810°

3 Определение синуса, косинуса и тангенса угла

Синусом угла α называется ордината точки, полученной поворотом точки (1;0) вокруг начала координат на угол α (обозначается \sin^{α}).

Косинусом угла α называется абсцисса точки, полученной поворотом точки (1;0) вокруг начала координат на угол α (обозначается \cos^{α}).

Тангенсом угла α называется отношение синуса угла α к его косинусу (обозначается tg^{α}).

$$\mathbf{tg}\alpha = \frac{\sin\alpha}{\cos\alpha(3.1)}$$

Котангенсом угла α называется отношение косинуса угла α к его синусу (обозначается $\operatorname{ctg}^{\alpha}$).

Приведем таблицу часто встречающихся значенийсинуса, косинуса, тангенса, котангенса.

Таблица 3.1

Угол в	0°	30°	45°	60°	90°	180°	270°	360°
градусах								
Угол в	0	π	π	π	π	Я	3π	2π
радианах		6	4	3	2		2	
sin α	0	1	1	√3	1	0	_ 1	0
		2	$\sqrt{2}$	$\frac{\sqrt{3}}{2}$			_	
cosα	1	$\sqrt{3}$	1_1_	1_	0	-1	0	1
		2	$\sqrt{2}$	2		_ •		
tgα	0	1	1	$\sqrt{3}$	не	0	не	0
		$\sqrt{3}$			сущ.		сущ.	
ctga	не	√3	1	1	0	не	0	не
	сущ.	,		$\sqrt{3}$		сущ.		сущ.

$$\frac{4\sin\pi}{6} + \sqrt{3}\cos\pi - tg\frac{\pi}{4}.$$
Вычислить

Используя таблицу 3.1, получаем:

$$\frac{4\sin\pi}{6} + \sqrt{3}\cos\pi - tg\frac{\pi}{4} = 4 \cdot \frac{1}{2} + \sqrt{3} \cdot \frac{\sqrt{3}}{2} - 1 = 2,5$$

Значениясинуса, косинуса, тангенса, котангенса для углов, не вошедших в эту таблицу, можно найти по четырехзначным математическим таблицам В. М.Брадиса.

Найти значение выражения:

1)
$$\frac{\frac{3\sin\pi}{6} + 2\cos\pi}{6} - tg\frac{\pi}{3};$$

$$\frac{5\sin\pi}{4} + 3tg\frac{\pi}{4} - 5\cos\pi}{4} - \mathbf{10}ctg\frac{\pi}{4};$$

3)
$$4) \frac{\sin \pi}{3} \cdot \cos \pi - tg \frac{\pi}{4};$$

$$\frac{\frac{\sin \pi}{4} \cdot \cos \pi}{4} - \frac{\sin \pi}{3} \cos \pi}{6};$$
5)
$$\frac{6}{7} \left(tg \frac{\pi}{4} - ctg \frac{\pi}{3}\right) \left(ctg \frac{\pi}{4} + tg \frac{\pi}{6}\right);$$
8)

4 Знаки синуса, косинуса, тангенса и котангенса

Пусть точка (1; 0) движется по единичной окружности против часовой стрелки. Для точек, находящихся в первой четверти, ординаты и абсциссы положительны. Поэтому sina>0 и cosa>0, если а лежит в первой четверти, смотри рисунок 4. 1.

Для точек, расположенных во второй четверти, ординаты положительны, а абсциссы отрицательны. Следовательно, sina>0, cosa<0, если а лежит во второй четверти, смотри рисунок 4. 1. Аналогично в третьей четверти sina<0, cosa<0, а в четвертой четверти sina<0, cosa>0, смотри рисунок 4. 1. При дальнейшем движении точки по окружности знаки синуса и косинуса определяются тем, в какой четверти окажется точка.

По определению $\mathbf{tg}\alpha = \frac{\sin\alpha}{\cos\alpha}$. Поэтому $\mathbf{tg}\alpha > \mathbf{0}$, если $\sin\alpha$ и $\cos\alpha$ имеют одинаковые знаки, и $\mathbf{tg}\alpha < \mathbf{0}$. если $\sin\alpha$ и $\cos\alpha$ имеют противоположные знаки. Знаки тангенса и котангенса изображены на рисунке 4.1.

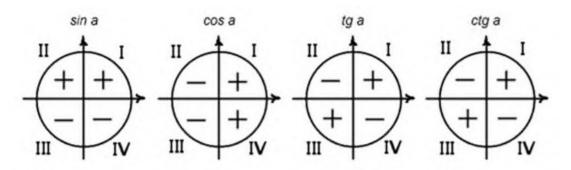


Рисунок 4. 1 – Знаки тригонометрических функций

Выяснить знаки синуса и косинуса угла

Углу соответствует точка единичной окружности,
$$\frac{\sin 3\pi}{4} > 0, \cos 3\pi$$
 расположенная во второй четверти. Поэтому $\frac{\sin 3\pi}{4} > 0$.

Выяснить знаки синуса и косинуса угла 745°

Так как $745^{\circ} = 2 \cdot 360^{\circ} + 25^{\circ}$, то повороту точки(1;0) на угол 745° соответствует точка, расположенная в первой четверти. Поэтому $sin745^{\circ} > 0$, $cos745^{\circ} > 0$.

Определить знак числа $\sin \alpha$, если:

1)
$$\alpha = \frac{5\pi}{4}$$
;
2) $\alpha = -\frac{33\pi}{7}$;

- $\alpha = \frac{4\pi}{3};$
- 4) $\alpha = -0.1\pi$;
- 5) $\alpha = 5,1$;
- 6) $\alpha = -470^{\circ}$.

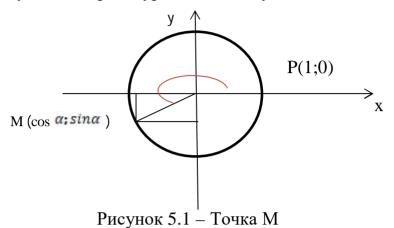
Определить знак числа $\cos \alpha$, если:

- $\alpha = \frac{2\pi}{3};$
- 2) $\alpha = \frac{7\pi}{6}$; $\alpha = \frac{-2\pi}{5}$;
- 4) $\alpha = 4.6$;
- 5) $\alpha = -5.3$;
- 6) $\alpha = -150^{\circ}$.

Определить знак числа $\mathbf{tg}\alpha$, если:

- 1) $\alpha = \frac{5\pi}{6};$ 2) $\alpha = \frac{12\pi}{5};$ 3) $\alpha = \frac{-5\pi}{4};$
- 4) $\alpha = 3.7$;
- 5) $\alpha = -1.3$;
- 6) $\alpha = 283^{\circ}$.

Пусть точка M(x;y) единичной окружности получена поворотом точки(1; 0) на угол α ,смотри рисунок5.1. Тогда по определению синуса и косинуса $x=\cos\alpha$, $y=\sin\alpha$. Точка M принадлежит единичной окружности, поэтому ее координаты (x;y) удовлетворяют уравнению $x^2+y^2=1$.



Следовательно,

$$\sin^2\alpha + \cos^2\alpha = 1 \tag{5.1}$$

Равенство (5.1) называется основным тригонометрическим тождеством.

Из равенства (5.1) можно выразить

$$\sin\alpha = \pm \sqrt{1 - \cos^2\alpha} \tag{5.2}$$

$$\cos\alpha = \pm \sqrt{1 - \sin^2\alpha} \tag{5.3}$$

В формулах 5.2и 5.3 знак перед корнем определяется знаком выражения, стоящего в левой части формулы.

Пример 1. Вычислить sina, если $\cos \alpha = -\frac{3}{5}$ и $\pi < \alpha < \frac{3\pi}{2}$.

Воспользуемся формулой (5.2). Так как $\pi < \alpha < \frac{3\pi}{2}$, то $\sin \alpha < 0$, то есть в формуле (5.2) перед корнем нужно поставить знак "-":

$$\sin \alpha = -\sqrt{1 - \cos^2 \alpha} = \sqrt{1 - \frac{9}{25}} = -\frac{4}{5}.$$

Пример 2. Вычислить $\cos \alpha$, если $\sin \alpha =$.

Так как $-\frac{\pi}{2} < \alpha < 0$, то $\cos \alpha > 0$, поэтому в формуле(5.3) перед корнем нужно ставить знак "+":

$$\cos\alpha = \sqrt{1 - \sin^2\alpha} = \sqrt{1 - \frac{1}{9}} = \frac{2\sqrt{2}}{3}.$$

Выясним зависимость между тангенсом и котангенсом

$$tg\alpha \cdot ctg\alpha = 1$$
 (5.4)

$$tg\alpha =$$
 (5.5)

$$ctg\alpha = (5.6)$$

Пример 3.Вычислить сtg α , если tg α =13.

По формуле (5.6) находим сtgα=.

Пример 4.Вычислить tga, еслиsina=0.8 и $\frac{\pi}{2} < \alpha < \pi$

По формуле (5.3) находим $\cos \alpha$. Так $\tan \frac{\pi}{2} < \alpha < \pi$, $\tan \alpha < 0$. Поэтому $\cos \alpha = -\sqrt{1-\sin^2 \alpha} = \sqrt{1-0.64} = -0.6$.

Следовательно,
$$tg\alpha = \frac{sin\alpha}{cos\alpha} = \frac{0.8}{-0.6} = -\frac{4}{3}$$
.

Используя основное тригонометрическое тождество и определение тангенса, найдем зависимость между тангенсом и косинусом.

Разделим обе части равенства $\sin^2\alpha + \cos^2\alpha = 1$ на $\cos^2\alpha$ предполагая, что $\cos\alpha \neq 0$. Получим равенство ,откуда

(5.7)

Пример 5. Вычислить tga, еслисоs $\alpha = -\frac{3}{5}$ и $\frac{\pi}{2} < \alpha < \pi$.

Из формулы (5.7) получаем

$$tg^2\alpha = \frac{1}{\cos^2\alpha} - 1 = \frac{1}{\left(-\frac{3}{5}\right)^2} - 1 = \frac{16}{9}$$

Тангенс во второй четверти отрицателен, поэтому $tg\alpha = -\frac{4}{3}$.

Пример 6. Вычислить $\cos \alpha$, если $tg\alpha = \frac{3 \text{ и } \pi < \alpha < \frac{3\pi}{2}}{2}$.

Из формулы (5.7) получаем

$$\cos^2\alpha = \frac{1}{1 + tg^2\alpha} = \frac{1}{10}.$$

Так как $\pi < \alpha < \frac{3\pi}{2}$, то $\cos \alpha < 0$, и поэтому $\cos \alpha = -\sqrt{0.1}$.

Упражнения

1 Вычислить:

1) $in\alpha, tg\alpha, ctg\alpha, ecnu cos\alpha = -\frac{3}{5} \text{ M } \frac{\pi}{2} < \alpha < \pi ;$

2) c osa,tga, ctga, если sina= $-\frac{2}{5}$ и $\pi < \alpha < \frac{3\pi}{2}$.

S

2 Вычислить значение каждой из тригонометрических функций, если:

1)
$$c$$
 $os\alpha=;$

2) s
$$in\alpha = \frac{0.8 \text{ H} \frac{\pi}{2} < \alpha < \pi}{2};$$
3) t
$$g\alpha = \frac{15}{8} \text{ H} \pi < \alpha < \frac{3\pi}{2};$$
4) c
$$tg\alpha = -3 \text{ H};$$
5) c
$$os\alpha = 0.8 \text{ H} 0 < \alpha < \frac{\pi}{2};$$
6) s
$$in\alpha = -\frac{5}{13} \text{ H} \frac{3\pi}{2} < \alpha < 2\pi;$$
7) t
$$g\alpha = -2.4 \text{ H} \frac{\pi}{2} < \alpha < \pi;$$
8) c

6 Тригонометрические тождества

 $tg\alpha = .$

Способы доказательства тождеств: преобразование левой части к правой; преобразование правой части к левой; установление того, что разность между левой и правой частями равна нулю. Иногда удобно доказательство тождества провести преобразованием его левой и правой частей к одному и тому же выражению.

Пример 1.Доказать тождество $\cos^2\alpha = (1-\sin\alpha)(1+\sin\alpha).$ $(1-\sin\alpha)(1+\sin\alpha) = 1-\sin^2\alpha = \cos^2\alpha.$ Пример 2.Доказать тождество $\frac{\cos x}{1-\sin x} = \frac{1+\sin x}{\cos x}.$

Чтобы доказать это тождество, покажем, что разность между левой и правой частями равна нулю:

$$\frac{\cos x}{1-\sin x} - \frac{1+\sin x}{\cos x} = \frac{\cos^2 x - (1-\sin^2 x)}{\cos x(1-\sin x)} = \frac{\cos^2 x - \cos^2 x}{\cos x(1-\sin x)} = 0.$$

Пример 3.Доказать тождество
$$\frac{1-tg^2x}{1+tg^2x} = cos^4x - sin^4x$$
.

$$\frac{1-tg^2x}{1+tg^2x} = \frac{1-\frac{sin^2x}{cos^2x}}{1+\frac{sin^2x}{cos^2x}} = \frac{cos^2x-sin^2x}{cos^2x+sin^2x} = cos^2x-sin^2x,$$

$$cos^4x - sin^4x = (cos^2x - sin^2x)(cos^2x + sin^2x) = cos^2x - sin^2x.$$

Тождество доказано так как его левая и правая части равны $cos^2x - sin^2x$.

Упражнения

Доказать тождество:

1)
$$1-\cos\alpha(1+\cos\alpha)=\sin^2\alpha;$$
 (

(1 - sir

c

$$\frac{1+tg^2x}{}$$

Упростить выражение:

3)

Упростить выражениеи найти его значение:

1) при
$$\alpha = \frac{\pi}{4}$$
;

2) при
$$x = \frac{\pi}{6}$$
.

COS2X +

7 Синус, косинус и тангенс углов а и -а

$$Sin(-\alpha) = -\sin\alpha \qquad (7.1)$$

 $\cos(-\alpha) = \cos(7.2)$

Используя определение тангенса получаем

$$\frac{\sin(-\alpha)}{\cos(-\alpha)} = \frac{-\sin\alpha}{\cos\alpha} = -\tan\alpha$$
(7.3)

Формулы (7.1)-(7.3) позволяютсводить вычисление значений синуса, косинуса и тангенса отрицательных углов к вычислению их значений для положительных углов. Например,

$$\sin\left(-\frac{\pi}{6}\right) = -\frac{\sin\pi}{6} = -\frac{1}{2}.$$

$$\cos\left(-\frac{\pi}{4}\right) = \frac{\cos\pi}{4} = \frac{\sqrt{2}}{2},$$

$$tg\left(-\frac{\pi}{3}\right) = -tg\frac{\pi}{3} = -\sqrt{3}.$$

Упражнения

Вычислить:

1)
$$\cos\left(-\frac{\pi}{6}\right)\sin\left(-\frac{\pi}{6}\right)$$

2)

$$\frac{2 - \sin^2\left(-\frac{\pi}{6}\right)}{2\cos\left(-\frac{\pi}{3}\right)}$$

Упростить выражение:

1)
$$g(-\alpha)\cos\alpha + \sin\alpha;$$

 $\cos \alpha$ –

$$\sin(x+y) = \sin x \cdot \cos y + \cos x \cdot \sin y \tag{8.1}$$

 $\sin(x-y)=\sin x \cdot \cos y - \cos x \cdot \sin y$

(8.2)

 $cos(x+y)=cosx \cdot cosy \cdot sinx \cdot siny(8.3)$

 $\cos(x-y)=\cos x \cdot \cos y + \sin x \cdot \sin y$ (8.4)

$$tg(x+y) = \frac{tgx + tgy}{1 - tgx \cdot tgy}$$
(8.5)

$$tg(x-y) = \frac{tgx - tgy}{1 + tgx \cdot tgy}$$

(8.

6)

Пример 1 Вычислить

По формуле (8.3) находим

Пример 2 Вычислить

По формуле (8.4) находим

Пример 3 Вычислить

По формуле (8.1) находим

$$\frac{\frac{\sin 8\pi}{7}\cos \pi}{7} - \frac{\sin \pi}{7}\cos 8\pi$$

Пример 4 Вычислить

$$\frac{\frac{\sin 8\pi}{7}\cos \pi}{7} - \frac{\sin \pi}{7}\cos 8\pi}{7} = \sin\left(\frac{8\pi}{7} - \frac{\pi}{7}\right) = \sin\pi = 0.$$

Упражнения

С помощью формул сложения вычислить:

- 1)
- 2)
- 3)
- 4)

Вычислить, не пользуясь таблицами:

a)
$$73^{\circ} \cdot \cos 17^{\circ} + \cos 73^{\circ} \cdot \sin 17^{\circ}$$
;

b)
$$73^{\sharp} \cdot \cos 13^{\sharp} \cdot \sin 13^{\sharp};$$

c)
$$\frac{\pi}{12} + \frac{\pi}{\sin \cos 12}$$
 sincos

9 Синус, косинус и тангенс двойного угла

 $sin2\alpha = 2 sin \alpha cos \alpha (9.1)$

Пример 1 Вычислить $sin2\alpha$, если $sin\alpha = -0.6$ и $\pi < \alpha < \frac{3\pi}{2}$.

По формуле (9.1) находим $sin\mathbf{2}\alpha = \mathbf{2}\sin\alpha\cos\alpha = 2\cdot(-0,6)\cdot\cos\alpha = -1,2\cos\alpha$.

Так как
$$\pi < \alpha < \frac{3\pi}{2}$$
, $_{\text{То}} \cos \alpha < 0$, $_{\text{И}}$ поэтому $\cos \alpha = -\sqrt{1-\sin^2 x} = -\sqrt{1-0.36} = -0.8$. Следовательно, $\sin 2\alpha = -1.2 \cdot (-0.8) = 0.96$.

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha \ (9.2)$$

Пример 2 Вычислить $cos2\alpha$, ecnu $cos\alpha = 0,3$.

Используя формулу (9.2) и основное тригонометрическое тождество, получаем

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = \cos^2 \alpha - \mathbb{I}(1 - \cos)^2 \alpha) = 2\cos^2 \alpha - 1 = 2 \cdot (0,3)^2 - 1 = -0.82$$

$$tg2\alpha = \frac{2tg\alpha}{1 - tg^2\alpha}$$
(9.3)

Пример 3 Вычислить $tg2\alpha$, если $tg\alpha = \frac{1}{2}$.

По

формуле

(9.3)

$$tg2\alpha = \frac{2\frac{1}{2}}{1 - (\frac{1}{2})^2} = \frac{4}{3} = 1\frac{1}{3}$$

находим

Упражнения

Вычислить:

a)

b)

c)

(cos 75° - sin

d)

cos275°-sin

e)

Вычислить $sin2\alpha$, если:

a) $\frac{\pi}{2} < \alpha < \pi;$

 $sin\alpha = \frac{3}{5}$

b) $_{_{\text{\tiny H}}}\pi<\alpha<\frac{3\pi}{2}.$

 $cos\alpha = -\frac{4}{5}$

Вычислить $cos2\alpha$, если:

a)

 $sin\alpha = -\frac{3}{5};$

 $\cos\alpha = \frac{4}{5}$

Упростить выражение:

sin2α + (sina

sin2α (sinα + cos

Доказать тождество:

$$sin 2\alpha = (sin \alpha)$$

$$1 - \sin 2\alpha = 0$$

$$cos2\alpha = cos^4$$

2cos2 a - cos

10 Синус, косинус, тангенс половинного угла.

$$\cos^2 \frac{x}{2} = \frac{1 + \cos x}{2}$$
(10.1)

$$\sin^2 \frac{x}{2} = \frac{1 - \cos x}{2}$$
 (10.2)

Формулы (10.1) и (10.2) называют формулами синуса и косинуса половинного угла. Иногда их называют также формулами понижения степени.

Пример 2 Вычислить
$$\frac{\cos x}{2}$$
, $ecnu \cos x = -0.02$ и $0 < x < \pi$.

По формуле (10.1) находим
$$cos^2 \frac{x}{2} = \frac{1 + cosx}{2} = \frac{1 - 0.02}{2} = 0.49.$$

$$0 < \frac{x}{2} < \frac{\pi}{2}$$

Так
$$_{\text{как}} 0 < x < \pi$$
, то и поэтому $\frac{\cos x}{2} > 0$. Следовательно $\frac{\cos x}{2} = \sqrt{0.49} = 0.7$.

Разделив равенство (10.2) на равенство (10.1), получим формулу тангенса половинного угла

$$tg^2 \frac{x}{2} = \frac{1 - \cos x}{1 + \cos x}$$
 (10.3)

Пример 3 Вычислить $tg\frac{x}{2}$, если cosx = 0.8 и $\pi < x < 2\pi$.

По формуле (10.3) имеем
$$tg^2\frac{x}{2} = \frac{1-\cos x}{1+\cos x} = \frac{1-0.8}{1+0.8} = \frac{0.2}{1.8} = \frac{1}{9}$$
.

По условию $\pi < x < 2\pi$, поэтому $\frac{\pi}{2} < \frac{x}{2} < \pi$ и $tg \frac{x}{2} < 0$.

Следовательно,
$$tg\frac{x}{2} = -\sqrt{\frac{1}{9}} = -\frac{1}{3}$$
.

Упражнения

$$\frac{\sin x}{2}$$

$$tg\frac{x}{2}$$

$$ctg\frac{x}{2}$$

Пусть $\sin \alpha = \frac{3}{5} \frac{\pi}{4} < \alpha < \pi$. Вычислить:

1)
$$\frac{\cos x}{2}$$

$$\frac{\sin x}{2}$$

$$tg\frac{x}{2};$$

$$cta\frac{x}{2}$$

Вычислить:

- a)
- b) .

Упростить выражение:

a)
$$\frac{1 - \cos x}{\sin x}$$

b)
$$\frac{\sin x}{1 + \cos x}$$
;
$$\frac{1 - \cos 2x + \cos 2x}{1 + \cos 2x}$$
;
$$1 + \cos 4x$$
d)

11 Формулы приведения

Формулы приведениядля синуса

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x \tag{11.1}$$

$$sin(\pi - x) = sinx \tag{11.2}$$

$$\sin\left(\frac{3\pi}{2} - x\right) = -\cos x \tag{11.3}$$

$$\sin(2\pi - x) = -\sin x \tag{11.4}$$

$$\sin\left(\frac{\pi}{2} + x\right) = \cos x \tag{11.5}$$

$$\sin(\pi + x) = -\sin x \tag{11.6}$$

$$\sin\left(\frac{3\pi}{2} + x\right) = -\cos x\tag{11.7}$$

 $sin(2\pi k + x) = sinx, k \in \mathbb{Z}$ (11.8)

Формулы приведениядля косинуса

$$\cos\left(\frac{\pi}{2} - x\right) = \sin x \tag{11.9}$$

$$cos(\pi - x) = -cosx$$
 (11.10)

$$c os\left(\frac{3\pi}{2} - x\right) = -sinx \tag{11.11}$$

 $\cos(2\pi - x) = \cos x \ (11.12)$

$$\cos\left(\frac{\pi}{2} + x\right) = -\sin x \tag{11.13}$$

$$\cos(\pi + x) = -\cos x \ (11.14)$$

$$\cos\left(\frac{3\pi}{2} + x\right) = \sin x \tag{11.15}$$

$$\cos(2\pi k + x) = \cos x, k \in \mathbb{Z}$$
(11.16)

Формулы приведениядля тангенса

$$tg\left(\frac{\pi}{2} - x\right) = ctgx \tag{11.17}$$

$$tg(\pi - x) = -tgx$$
 (11.18)

$$tg\left(\frac{3\pi}{2} - x\right) = ctgx \tag{11.19}$$

$$tg(2\pi - x) = -tgx$$
 (11.20)

$$tg\left(\frac{\pi}{2} + x\right) = -ctgx \tag{11.21}$$

$$tg(\pi k + x) = tgx, k \in \mathbb{Z}$$
(11.22)

$$tg\left(\frac{3\pi}{2} + x\right) = -ctgx \tag{11.23}$$

 $tg(2\pi + x) = tgx$ (11.24)

Формулы приведениядля котангенса

(11.25)

(11.26)

(11.27)

(11.28)

(11.29)

(11.30)

(11.31)

(11.32)

Пример 1 Вычислить sin 930°.

Используя формулу (11.8), получаем $\sin 930^{\circ} = \sin (3 \cdot 360^{\circ} - 150^{\circ}) = \sin (-150^{\circ}).$

По формуле $\sin(-x) = -\sin x$ получим $\sin(-150^\circ) = -\sin 150^\circ$. По формуле (11.2) находим $-\sin 150^\circ = -\sin (180^\circ - 30^\circ) = -\sin 30^\circ = -\frac{1}{2}$.

 $\frac{\cos 15\pi}{4}$. Пример 1 Вычислить $\frac{\cos 15\pi}{4}$.

$$\frac{\cos 15\pi}{4} = \cos\left(4\pi - \frac{\pi}{4}\right) = \cos\left(-\frac{\pi}{4}\right) = \frac{\cos \pi}{4} = \frac{\sqrt{2}}{2}.$$

Пример 2 Вычислить сов 150°.

j)

k)

Распишем $150^{\circ} = 90^{\circ} + 60^{\circ}$. Используем формулу(11.12)

$$\cos 150^\circ = \cos(90^\circ + 60^\circ) = -\sin 60^\circ = -\frac{\sqrt{3}}{2}$$

Или можно представить $150^{\circ} = 180^{\circ} - 30^{\circ}$ и использовать формулу (11.10)

$$\cos 150^{\circ} = \cos(180^{\circ} - 30^{\circ}) = -\cos 30^{\circ} = -\frac{\sqrt{3}}{2}.$$

Используя формулы приведения, вычислить:

a)	;
b)	;
c)	;
d)	ctg 135°;
e)	ctg240°;
f)	cos 120°;
g)	sin315°;
h)	$tg\frac{5\pi}{4}$;
i)	$\frac{\sin 7\pi}{6}$;
	$\sin\left(-\frac{13\pi}{2}\right)$

 $\cos\left(-\frac{7\pi}{3}\right);$

$$tg\left(-\frac{2\pi}{3}\right);$$

$$ctg\left(-\frac{7\pi}{4}\right).$$

$$ctg\left(-\frac{7\pi}{4}\right)$$

Упростить выражение:

$$ctg\left(\frac{\pi}{2}-1\right)$$

1)

 $Sin(\pi - X) + 0$

2)

3)

Используя формулы приведения, вычислить:

a)

sin 1140°;

b)

tg 405°;

c)

 $\frac{\sin 47\pi}{6}$

d)

e)

 $\frac{\cos 21\pi}{4}$

f)

Найти значение выражения:

$$\cos 630^{\circ} - \sin 630^{\circ}$$

$$tg1800^{\circ} - sin$$

12 Сумма и раность синусов. Сумма и раность косинусов

Сумма и разность синусов

$$\frac{\sin\alpha + \sin\beta = \frac{2\sin(\alpha + \beta)}{2}\cos(\alpha - \beta)}{2}$$
(12.1)

$$\frac{\sin\alpha - \sin\beta = \frac{2\sin(\alpha - \beta)}{2}\cos(\alpha + \beta)}{2}$$
(12.2)

Сумма и разность косинусов

$$\frac{\cos\alpha + \cos\beta = \frac{2\cos(\alpha + \beta)}{2}\cos(\alpha - \beta)}{2}$$
(12.3)

$$\frac{\cos\alpha - \cos\beta = -\frac{2\sin(\alpha + \beta)}{2}\sin(\alpha - \beta)}{2}$$
(12.4)

Пример 1 Вычислить $sin75^{\circ} + sin15^{\circ}$.

Для вычисления применим формулу (12.1).

$$\frac{sin75^{\circ} + sin15^{\circ} = \frac{2\sin(75^{\circ} + 15^{\circ})}{2}\cos(75^{\circ} - 15^{\circ})}{2} = 2sin45^{\circ}cos30^{\circ} = 2\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} = 2\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} = 2\frac{\sqrt{2}}{2} = 2\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} = 2\frac{\sqrt{2}}{2} = 2\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} = 2\frac{\sqrt{2}}{2} = 2\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} = 2\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} = 2\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} = 2\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2$$

Пример 2 Преобразовать в произведение

В данном примере необходимо избавиться от числа 2, стоящего перед синусом, вынеся его за скобку, далее в таблице значений необходимо найти

синус какого угла равен $\frac{\sqrt{3}}{2}$. Записать в скобке вместо Применить формулу (12.1).

Упростить выражение:

1)
$$\sin\left(\frac{\pi}{3} + \alpha\right) + s$$
2)
$$\cos\left(\frac{\pi}{4} - x\right) - c$$
3)
$$\sin^2\left(\frac{\pi}{4} + x\right) - s$$

$$\cos\left(\frac{\pi}{4}-x\right)-\cos\left(\frac{\pi}{4}-x\right)$$

$$\sin^2\left(\frac{\pi}{4} + x\right) -$$

Вычислить:

- 1)
- 2)

$$\frac{\cos 11\pi}{12} + \frac{\cos 11\pi}{12}$$
 $\frac{\cos 11\pi}{12} - \frac{\cos 11\pi}{12}$ $\frac{\cos 11\pi}{12} - \frac{\cos 1\pi}{12} - \frac{\sin \pi}{12}$ $\frac{\sin 7\pi}{12} - \frac{\sin 7\pi}{12}$ $\frac{\sin 7\pi}{12} -$

 $\frac{\sin x + \sin 3x}{\cos x + \cos 3x}$

 $\frac{\sin 2x + \sin 4}{\cos 2x - \cos 4}$

Заключение

Поскольку математика — это наука, которая изучает пространственные формы и количественные отношения реального мира, то изучая математику, человек познает окружающий мир в двух аспектах, а именно то, что касается

пространственных форм, является тем, что касается количественных отношений.

Известно, что человек познает окружающий мир по закону: от живого созерцания к абстрактному мышлению и от него к практике — таков диалектический путь познания действительности.

Тригонометрия — один из важнейших разделов математики, а поэтому усвоение материала по данному разделу является главной задачей учителя. Изучение тригонометрии невозможно без использования рисунков, а значит и наглядности.

Наиболее употребительным наглядным пособием в данной теме есть макет единичного круга, поскольку с помощью него вводятся определения синуса, косинуса, тангенса и котангенса произвольного угла; решаются тригонометрические уравнения и неравенства; исследуются тригонометрические функции.

Можно сделать вывод, что умелое использование наглядных пособий на различных этапах урока обеспечит интерес учащихся к обучению математике, а, следовательно, к лучшему его пониманию и запоминанию.

Список использованных источников

1 Алимов Ш. А., Колягин Ю. М., Сидоров Ю. В., Федорова Н. Е., Шабунин М. И. Алгебра и начала анализа. Учебник для 10-11 кл. общеобразоват. учреждений – 14-е изд. – М.: Просвещение, 2006. - 384 с.: ил.

- 2 Мордкович А. Г. Алгебра и начала анализа. 10-11 классы. В 2 ч Ч. 1. Учебник для учащихся общеобразовательных учреждений(базовый уровень)/ А..Г Мордкович. 10-е изд., стер. М.: Мнемозина, 2009. 399с.: ил.
- 3 Дадаян А. А. Математика: Учебник. М.: ФОРУМ: ИНФРА М, 2005. 552 с.
- 4 Башмаков М. И. Алгебра и начала анализа 10 кл. Базовый уровень: учеб. для общеобразоват. учреждений / Башмаков М. И. М.: Дрофа, 2008. 286, [2] с.: ил.